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Counterfactual outcomes

@ Scholing for individual 7 is described by a binary random variable,
D; ={0,1}

say D; = 1 denotes completing high school, and D; = 0 denotes
dropping out.

@ The outcome of interest, log earnings is denoted by y;.
@ Potential outcomes: What would have happened to someone who

completes if they had dropped out and vice versa. Hence, for
everybody there are two

Yy, ifDi=1

potential outcomes = { Yo; if D=0
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Potential and observed outcomes

@ The effect of completing school for individual i is Y7; — Yp;.

@ The observed outcome, Y;, can be written in terms of potential
outcomes as

B Y, ifD; =1

o Yoi ifD;=0

= Yoi+ (Y1, — Y0i)D:.

@ We only observe either Yi; or Yy, for a single individual.
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The selection problem

We can write the observed difference in earnings for the treated and
untreated as the sum of two terms:

E[Yi|D; = 1] — E[Y;|D; = 0] = E[Y1i|Di = 1] — E[Y4i|D; = 0]

Observed diff in earnings cond. on schooling

= E[Y1i|D; =1] — E[Yyi|Di = 1]
average treatment effect on the treated
+E [Y0;|D,' = 1] — E [Yo,'|D,' = 0]

ability or selection bias
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Selection on observables

The key to regression is that conditional on observable variables, e.g.
ability, counterfactual outcomes are mean independent of schooling:

E [YoilAi, Di] = E [ Yoi| Al (1)
Then:

E[Y;|A;, Di = 1] — E[Y;|A;, D; = 0]

~

Observed difference in average log earnings
= E [Y1;|A,~, D, = 1] - E[YO;’A,', D; = 0]
E [Y1i|Ai, D =1] — E[YilAi, Di =1]
if (1) holds get to switch D
= E [Y1i — Yoil A, Di = 1]

average treatment effect on the treated in groups defined by A;
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Selection on observables leads to matching

We have just estimated group specific treatment effects defined by the
variable A;:

E[Y,|A, = a, D,' = 1] — E[Y,‘A, = a, D,' = O]
= E[Yl,' — Yo,"A,' = a, D,' = 1] = pa

Do this for all values the variable A; takes on.

To get from these group conditional averages to the overall average use
the rules for conditional probability

E[Y1i — Yoi| Di = 1]
= Y E[Vii— YoilA = a,D; = 1] Pr(A; = a|D; = 1)
a

= Zpa Pr (A,’ = a|D,- = 1)
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From matching to regression

How to get from this to a regression is easiest to see in a constant effects
setting. So let p, = p and write

Yoi = a+7;
Yii = Yoitp
Using
Yi = Yoi+ (Yii— Yoi)D;
= E(Yoi) + (Yai — Yoi) Di + [Yoi — E (Yoi)]
N’
o P 17;
= a+pDi+7;
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Still on the road to regression

Yi=a+pDity, (2)
Using the CIA (1)
E [YoilAi, Di] = E [YoilAi] < E [17;|Ai, Di] = E [1;]Al]

we see that 7, is a function of A;, which is related to D;. So (2) is not a
regression yet. Approximate E [1;|A;] by a linear function

E[p|A] = 7A
N, = ')/A,-—I-e,- E[e,-|A,-]:0

Substitute in (2):
Yi=a+pDi+ A +e

which is a regression (i.e. E [e|A;, Dj| = 0).
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Regression anatomy

A key tool in understanding multivariate regression the regression anatomy
formula (or Frisch-Waugh-Lowell theorem). Consider a generic bivariate
regression:

Yi=a+ B X1+ B, Xoi + e
Then N
COV(Y,"Xl,')
g, = oA )
Var (X))

where Xi; is the residual from a regression of Xi; on Xj;:

X1j = 10 + 11 Xoi + Xij.
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The regression anatomy formula derived

Substitute the expression for the long regression into

Cov(Y; Xi7) _ Cov(a+ By X1i + By Xoi + €, Xi7)
Var()N(l,-) V3r<)~<1i)
:Vai()?l,-) =0 =0
. ‘31COV(X1,',)?1,') +‘82COV(X2,',)~<1,') + COV(e,',)N(l,')
Var(;(l,-)
o Var(Xy)
= Pz Var(Xq;) =P

In words: the coefficient from a bivariate regression of Y; on Xi; is
numerically the same as the long regression coefficient on Xi; from a
regression of Y; on Xi; and Xy;.
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Alternative versions of regression anatomy

@ Regression anatomy can also be written as

,B . COV(Y,',)?l,') . COV(?;’;Q,')
! Var()~(1,-) Var()?l,-)

i.e. also partialling out X5; from the dependent variable.
@ It is not enough to partial out the covariate from the dependent
variable alone
COV(?,',Xl,') _ COV(?,’v)N(l,') Var()~<1,-)
Var(Xl,-) Var()?li) Var(Xl,-)

7 B

(you can partial out Xp; from Y; but you must partial it out from Xj;).

@ Regression anatomy works for multiple covariates just as well.
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Ability bias and the returns to schooling

We would like to run the long regression
Yi=a+pS +7yAi + &

where Y; is log earnings, S; is schooling and A; is ability. If we don’t have
a measure of ability we can only run the short regression

Yi=as+p,Si+ €.

What do we get?
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The omitted variables bias formula

@ The relationship between the long and short regression coefficients is
given by the omitted variables bias (OVB) formula

~ Cov(Yi,Si) e
Ps = Var(S;) —PT0As

where
. COV(A,',S,')

Oac =
A7 TVar(s)
is the regeression coefficient from a regression of A; (the omitted
variable) on S; (the included variable).

o Exercise: Derive the OVB formula (works just like for regression
anatonmy).

@ The OVB formula is a mechanical relationship between two
regressions: it holds regardless of the causal interpretation of any of
the coeffcients.
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Griliches (1977) regressions

The conventional wisdom is Cov(A; S;) > 0, so returns to schooling
estimates will be biased up.

Short regression estimates using the NLS

Y; = const 4+ 0.068S; + experience
(0.003)

Long regression estimates

Y; = const + 0.0595; + 0. 0028 IQ; + experience
(0.003) (0.0005

@ The results are consistent with the conventional wisdom.
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Classical measurement error

@ Measurement error leads to bias. Many economic variables are
mismeasured.
@ Look at a generic example and start with a simple bivariate regression

Yi=a+BX" + e
We don't observe X* but X;
Xi = X"+ m;
where

Cov(X ' ,mj)) = 0
0

Cov(ej, mj) =

This is called classical measurement error.
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Attenuation from classical measurement error

The bivariate regression coefficient we estimate is

~ Cov(Y;, Xj)
B = iy
Var(X;)

Cov(a + BX* + ei, X + mj)
Var(X* 4+ m;)
Var(X*) B

p Var(X*) + Var(m;) pA-

We see that B is biased towards zero by an attenuation factor

B Var(X*)
~ Var(X) + Var(m;)

which is the variance in the “signal” divided by the variance in the “signal
plus noise.”
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How measurement error works

X

’0 True data © Mismeasured data
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Measurement error in the returns to schooling

@ Think of Y; as log earnings, and X; as schooling. Ignore age or
experience for the moment.
o Ashenfelter and Krueger (1994) find A = 0.9 for schooling.

@ This means if the true return to schooling is 0.1, we would expect an
estimate of 0.09.
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Measurement error with two regressors

@ The bivariate regression is not particularly interesting, since we
typically want to use regression to control for other factors.

o Consider
Yi =a+ B X{j + B, Xoi + €.
and only X{; is subject to classical measurement error, i.e.
COV(XI*I-, m,~) = COV(XQ,', m,-) =0.
@ Starting from
X1i = X{; +mj

and using the classical measurement error assumptions we have

)~<1,' = )~<1*, + m;.

Pischke (LSE) Griliches 1977 October 4, 2016 19 /



Measurement error with two regressors

The estimator of B, is now (using regression anatomy):
Cov (y,., )?1,.>
Var <>~<1,.>
Cov (zx + B X + By Xai + e, )?1*; n mi)
Var <5<1,.>
Var (X;; )
Ver (>~<f‘,-)<+ vzr (m) P

31:

= B

It is easy to see that A < A whenever X{; and Xy; are correlated.

Adding correlated regressors makes attenuation bias from measurement
error worse.
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Comparing the short and long regression

@ The short regression (on just Xi;) coefficient is

:Bl,short = AlBl + 52‘5X2X1 =A (,31 + .52‘5X2X1*)

where the estimate of 8, is biased both because of attenuation due to
measurement error, and because of omitted variables bias (the part

B,0x,x; Where dx,x, is the coefficient from a regression of X; on
Xii)-

@ The coefficient from the long regression is

ﬁl,long = ﬁl/\

and since

A<A

but
lgl,short § ;Bl,long'
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Comparing the short and long regression

@ Notice that it is more difficult to compare the bias from the short
regression and the long regression now.

e A< A implies that the attenuation bias goes up when another
regressor is entered which is correlated with Xj;.

@ There is less attenuation in the short regression but there is also OVB
now. Not clear what the net effect is.
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Measurement error in the control

@ What about the coefficient ,7 Even when there is no measurement
error in Xp;, the estimate of B, will be biased:

Bz = :315X2X1* <1 - X) + B,

@ Note that the bias will be larger the larger

o the measurement error
o the correlation between X[; and Xp;

@ The intuition is that

° ﬁl is attenuated, and hence does not reflect the full effect of Xl*i

o B, will capture part of the effect of X[ through the correlation with
Xai
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Measurement error in the returns to schooling controlling

for ability

We want to run the regression
Yi ZDC—F‘OS?—F’)/A,'-FG,'

where S/ is schooling and A; is ability. Suppose we only have a
mismeasured version of schooling, S; (so S; takes on the role of Xj; before,
and A; takes on the role of X5;). Then the short regression will give

/p\short = /\p + ’Y(SAS
and the long regression

ﬁlong = X‘O

If ability bias is upwards (645 > 0) it is not possible to say a priori which
estimate will be closer to p.
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Putting some numbers on the Griliches example

Pick some numbers for the regression

y; = 0.157 + 0.01A; + ¢

and set
A = 09
0s = 3,04 =15,045 = 225.
Then 295
TAS .
Ops = —= = =25

AS 0_‘2g 9

and

Beport = A0+ Y6as = 0.9 x 0.140.01 x 2.5 = 0.115
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What about the long regression?

We first need

s Var (5,-) :)‘_Rés
Var (S,*) + Var (m;) 1~ FRis
which is
2 2
Ris = < 7As ) = (22'5> =0.25
0s0A 45
~ 0.9—-0.25
A= ——— =0.867.
1—-0.25 086

Then the long regression coefficient is
Dlong = Ap = 0.867 x 0.1 = 0.087

so the short regression coefficient is too large and the long regression
coefficient is too small.
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Measurement error in ability

Now suppose years of schooling is measured perfectly but instead of A7 we
only have mismeasured ability A; (so S; takes on the role of Xy; before,
and A; takes on the role of Xj;). Then

0 =70as (1—X>—|—p.

If ability bias is upwards (645 > 0) then the returns to schooling will be
biased up but by less than in the short regression. Controlling for A; is
better than controlling for nothing, but not as good as controlling for true
ability A7.
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Instrumental variables solve the measurement error problem

@ Suppose you have an instrument Z;, correlated with the signal X;* and
uncorrelated with the error m;.

@ In the bivariate regression you get

-~ Cov(Y;, Z)) Cov(a+PBX*+ei,Z) PCov(X* Z)
ﬁIV = AN * . . = * N ﬁ
Cov(Xi, Z;) Cov(X: + m;, Z;) Cov(X*, Z;)

@ In the multivariate regression you get for similar reasons:

Bl,/v = B
52,/v = B

(notice that only the mismeasured Xj; is instrumented)
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More Griliches (1977) regressions

Recall the Griliches long regression estimates

y; = const + 0.0595; + 0.0028 1Q; + experience
(0.003) (0.0005)

Instrumenting 1Q with results from the Knowledge of the World of Work
test he gets

y; = const + 0.052S; + 0.0051 1Q; + experience
(0.004) (0.0009)

@ This is still consistent with two stories:
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More Griliches (1977) regressions

Recall the Griliches long regression estimates

y; = const + 0.0595; + 0.0028 1Q; + experience
(0.003) (0.0005)

Instrumenting 1Q with results from the Knowledge of the World of Work
test he gets

y; = const + 0.0525; + 0.0051 1Q; + experience
(0.004) (0.0009)

@ This is still consistent with two stories:

@ there is upward ability bias in the bivariate return to schooling and
measurement error in IQ but not schooling (in this case the estimate
of 0.052 is correct)
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More Griliches (1977) regressions

Recall the Griliches long regression estimates

y; = const + 0.0595; + 0.0028 1Q; + experience
(0.003) (0.0005)

Instrumenting 1Q with results from the Knowledge of the World of Work
test he gets

y; = const + 0.0525; + 0.0051 1Q; + experience
(0.004) (0.0009)

@ This is still consistent with two stories:

@ there is upward ability bias in the bivariate return to schooling and
measurement error in IQ but not schooling (in this case the estimate
of 0.052 is correct)

@ there is measurement error in both schooling and ability (in this case
the true coefficient could be anything).
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What to control for?

In the quest for identifying causal effects, which variables belong on the
right hand side of a regression equation?

@ Yes: Variables determining the treatment and correlated with the
outcome (e.g. ability).

@ in general these variables will be fixed characteristics or pre-determined

by the time of treatment (e.g. schooling)
e but remember the warnings on measurement error just discussed: the

kitchen sink is no panacea
@ Yes: Variables uncorrelated with the treatment but correlated with the
outcome
o these variables may help reducing standard errors

@ No: Variables which are outcomes of the treatment itself. These are
bad controls.
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Bad control

Some researchers regressing earnings on schooling (and experience) include
controls for occupation. Does this make sense?

o Clearly we can think of schooling affecting the access to higher level
occupations, e.g. you need a Ph.D. to become a college professor.
This gives rise to a two equation system

Yi = a+pSi+790 +¢
O = Ag+MS+y;

You could think about these as a simultaneous equations system.
Occupation O; is an endogenous variable. As a result, you could not
necessarily estimate the first equation by OLS.

@ Occupation is a bad control.
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Bad control example 1

occupation wage Observed data
OD O[ w.g W1 S = 0 5 = 1
T 1 B B 600 600 B, 600
ype (8, 625) (B, 600)
Type 2 B W 650 700 o
Type 3 W W 700 700 (W, 700) !

Pischke (LSE)

Griliches 1977

October 4, 2016 32/ 44



Bad control example 2

occupation wage Observed data
OO OI W[} W_-[ S = 0 5 = 1
Type 1 B B 600 625 B, 625
ype (B, 625) (B, 625)
Type 2 B W 650 700 (W, 725)
Type 3 W W 725 750 (W, 725) !
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Proxy control

Sometimes we control for a variable in the best of intentions. Suppose
our regression of schooling on earnings

Yi=a+pS +7yAi + &

has a causal interpretation conditional on ability.

Instead of ability we only have a test score taken at age 18, call it Aj; for
late ability. The problem is that schooling will already have influenced the
late ability (some students will have dropped out by 18). Suppose

A = 119 + 1 S; + T A;

i.e. that age 18 test scores are influenced by both schooling and true
ability.
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What do we get with proxy control?

Substituting for A; in our regression above we get

= (5= ) 4 (=22 54 L v,
U%)

If
p > 0
vy > 0
m > 0,71, >0
then

_om) L
P’Ym Y

and we will estimate a return to schooling that is too small.
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Are our results robust?

Suppose you have an identification strategy, say
Yi=ua+pS5 + 1A+

You have another variable, X;, which could potentially be an additional
confounder. What do you do with it?

Yi=a;+ 0,5 + 7 A + 7. X + el
Is o, = p?

Xi =09+ 05, + 61 A; + u;
Isd =07
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A tale of two tests

= a+pSi+rAite
ay +P/5i + YA+ Y Xi + e,!
= 0o+ 05 +01Ai +u;

Y;
Y
Xi

@ The test p, = p is a coefficient comparison test. Formally a
generalized Hausman test.

@ The test 6 = 0 is a balancing test.
How are they related? Through the OVB formula:
P =0 =720

Under the maintained assumption 7y, # 0, the two tests test the same null
hypothesis § = 0.
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Measurement error in controls again

Remember

P = ’725<1—X)+P

Yo = ToA

o Classical measurement error in X; biases p, towards p, and 7, towards
0.

e p, closer to p: power of the coefficient comparison test directly
affected.

e Variation from measurement error ends up in e
and reducing power

/

5 raising standard errors

@ There is no bias in the estimate of &

e Variation from measurement error ends up in u;, raising standard errors
and reducing power
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Theoretical Power Functions

Homoskedastic, plain standard errors

GJ_ .
2
=
S«
[<}
a
c
Sy |
5~
2
Q
x
(\]_ .
o 4
0 5 1 15 2
d
—— Balancing test, 6=0 (baseline) —— CC test, 6=0 (baseline)
— Balancing test, 6=.7 —— CCtest, 6=.7
= Balancing test, 6=.85 == CC test, 6=.85
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Simulated Rejection Rates

Heteroskedasticity, robust standard errors

(XJ_ -
=
=
8o
[
Q.
C
S«
=Y
2
[0}
hd
(\]_ -
o 4
0 5 1 15 2
d
— Balancing test, baseline -- CC test, baseline
— Balancing test, 8=0, robust -~ CC test, 6=0, robust
— Balancing test, 6=.85, robust == CC test, 6=.85, robust
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Simulated Rejection Rates

Mean reverting measurement error, robust standard errors

Rejection probability

Pischke (LSE)

5 1
d

1.5

—— Balancing test, baseline
— Balancing test, 6°,=.75
— Balancing test, 0°,=2.25

—— CC test, baseline
—— CCtest, 0°=.75
-= CCtest, 0°,=2.25
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Baseline Regressions for Returns to Schooling

Log hourly earnings Mother's years of Library card

education atage 14
(@) @ ©)] (6) @)
vears of education 0.0751 0.0728 0.0735 0.3946 0.0371
(0.0040) (0.0042) (0.0040) (0.0300) (0.0040)
) . 0.0059
Mother's years of education (0.0029)
. 0.0428
Library card at age 14 (0.0183)
p-values
Coefficient comparison test 0.045  0.023
Balancing test 0.000 0.000
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Returns to Schooling controlling for KWW score

Log hourly eamings Mother's years of Library card

education at age 14
()] 3] ©)] (6) M
Years of education 0.0609 0.0596 0.0608 0.2500 0.0133
(0.0059) (0.0060) (0.0059) (0.0422) (0.0059)
KWW score 0.0070 0.0068 0.0069 0.0410 0.0076
(0.0015) (0.0016) (0.0016) (0.0107) (0.0016)
. 0.0053
Mother's years of education
y ucat (0.0037)
Library card at age 14 (882%)
Body height in inches
p-values
Coefficient comparison test 0.163  0.652
Balancing test 0.000 0.025
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Returns to Schooling instrumentin

. Mother's years of Library card
Log hourly earnings education at age 14
@) 2 (©)] (6) @)
Years of education 0.0340 0.0339 0.0342 0.0234 0.0168
(0.0139) (0.0139) (0.0138) (0.0952) (0.0134)
. 0.0194 0.0195 0.0200 0.1496 0.0060
KWW score instrumented by 1Q /5569y (0.0063) (0.0063) (0.0422) (0.0060)
) : 0.0028
Mother's years of education (0.0039)
. -0.0130
Library card at age 14 (0.0245)
Body height in inches
p-values
Coefficient comparison test 0.818 0.635
Balancing test 0.806 0.212
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