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Counterfactual outcomes

Scholing for individual i is described by a binary random variable,

Di = {0, 1}

say Di = 1 denotes completing high school, and Di = 0 denotes
dropping out.

The outcome of interest, log earnings is denoted by yi .

Potential outcomes: What would have happened to someone who
completes if they had dropped out and vice versa. Hence, for
everybody there are two

potential outcomes =
{
Y1i if Di = 1
Y0i if Di = 0

.
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Potential and observed outcomes

The effect of completing school for individual i is Y1i − Y0i .
The observed outcome, Yi , can be written in terms of potential
outcomes as

Yi =

{
Y1i if Di = 1
Y0i if Di = 0

= Y0i + (Y1i − Y0i )Di .

We only observe either Y1i or Y0i for a single individual.
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The selection problem

We can write the observed difference in earnings for the treated and
untreated as the sum of two terms:

E [Yi |Di = 1]− E [Yi |Di = 0]︸ ︷︷ ︸
Observed diff in earnings cond. on schooling

= E [Y1i |Di = 1]− E [Y0i |Di = 0]

= E [Y1i |Di = 1]− E [Y0i |Di = 1]︸ ︷︷ ︸
average treatment effect on the treated

+E [Y0i |Di = 1]− E [Y0i |Di = 0]︸ ︷︷ ︸
ability or selection bias
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Selection on observables

The key to regression is that conditional on observable variables, e.g.
ability, counterfactual outcomes are mean independent of schooling:

E [Y0i |Ai ,Di ] = E [Y0i |Ai ] (1)

Then:

E [Yi |Ai ,Di = 1]− E [Yi |Ai ,Di = 0]︸ ︷︷ ︸
Observed difference in average log earnings

= E [Y1i |Ai ,Di = 1]− E [Y0i |Ai ,Di = 0]
= E [Y1i |Ai ,Di = 1]− E [Y0i |Ai ,Di = 1]︸ ︷︷ ︸

if (1) holds get to switch Di

= E [Y1i − Y0i |Ai ,Di = 1]︸ ︷︷ ︸
average treatment effect on the treated in groups defined by Ai

Pischke (LSE) Griliches 1977 October 4, 2016 5 / 44



Selection on observables leads to matching

We have just estimated group specific treatment effects defined by the
variable Ai :

E [Yi |Ai = a,Di = 1]− E [Yi |Ai = a,Di = 0]
= E [Y1i − Y0i |Ai = a,Di = 1] ≡ ρa

Do this for all values the variable Ai takes on.
To get from these group conditional averages to the overall average use
the rules for conditional probability

E [Y1i − Y0i |Di = 1]
= ∑

a
E [Y1i − Y0i |Ai = a,Di = 1]Pr (Ai = a|Di = 1)

= ∑
a

ρa Pr (Ai = a|Di = 1)

Pischke (LSE) Griliches 1977 October 4, 2016 6 / 44



From matching to regression

How to get from this to a regression is easiest to see in a constant effects
setting. So let ρa = ρ and write

Y0i = α+ ηi
Y1i = Y0i + ρ

Using

Yi = Y0i + (Y1i − Y0i )Di
= E (Y0i )︸ ︷︷ ︸

α

+ (Y1i − Y0i )︸ ︷︷ ︸
ρ

Di + [Y0i − E (Y0i )]︸ ︷︷ ︸
ηi

= α+ ρDi + ηi
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Still on the road to regression

Yi = α+ ρDi + ηi (2)

Using the CIA (1)

E [Y0i |Ai ,Di ] = E [Y0i |Ai ]⇔ E [ηi |Ai ,Di ] = E [ηi |Ai ]

we see that ηi is a function of Ai , which is related to Di . So (2) is not a
regression yet. Approximate E [ηi |Ai ] by a linear function

E [ηi |Ai ] = γAi
ηi = γAi + ei E [ei |Ai ] = 0

Substitute in (2):
Yi = α+ ρDi + γAi + ei

which is a regression (i.e. E [ei |Ai ,Di ] = 0).

Pischke (LSE) Griliches 1977 October 4, 2016 8 / 44



Regression anatomy

A key tool in understanding multivariate regression the regression anatomy
formula (or Frisch-Waugh-Lowell theorem). Consider a generic bivariate
regression:

Yi = α+ β1X1i + β2X2i + ei

Then

β1 =
Cov(Yi ,X̃1i )

Var(X̃1i )

where X̃1i is the residual from a regression of X1i on X2i :

X1i = π0 + π1X2i + X̃1i .
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The regression anatomy formula derived

Substitute the expression for the long regression into

Cov(Yi ,X̃1i )

Var(X̃1i )
=

Cov(α+ β1X1i + β2X2i + ei , X̃1i )

Var(X̃1i )

=
β1

=Var (X̃1i )︷ ︸︸ ︷
Cov(X1i , X̃1i ) + β2

=0︷ ︸︸ ︷
Cov(X2i , X̃1i ) +

=0︷ ︸︸ ︷
Cov(ei , X̃1i )

Var(X̃1i )

= β1
Var(X̃1i )

Var(X̃1i )
= β1.

In words: the coeffi cient from a bivariate regression of Yi on X̃1i is
numerically the same as the long regression coeffi cient on X1i from a
regression of Yi on X1i and X2i .

Pischke (LSE) Griliches 1977 October 4, 2016 10 / 44



Alternative versions of regression anatomy

Regression anatomy can also be written as

β1 =
Cov(Yi ,X̃1i )

Var(X̃1i )
=
Cov(Ỹi ,X̃1i )

Var(X̃1i )

i.e. also partialling out X2i from the dependent variable.

It is not enough to partial out the covariate from the dependent
variable alone

Cov(Ỹi ,X1i )
Var(X1i )

=
Cov(Ỹi ,X̃1i )

Var(X̃1i )

Var(X̃1i )
Var(X1i )

6= β1

(you can partial out X2i from Yi but you must partial it out from X1i ).

Regression anatomy works for multiple covariates just as well.
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Ability bias and the returns to schooling

We would like to run the long regression

Yi = α+ ρSi + γAi + ei

where Yi is log earnings, Si is schooling and Ai is ability. If we don’t have
a measure of ability we can only run the short regression

Yi = αs + ρsSi + e
s
i .

What do we get?
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The omitted variables bias formula

The relationship between the long and short regression coeffi cients is
given by the omitted variables bias (OVB) formula

ρs =
Cov(Yi , Si )
Var(Si )

= ρ+ γδAS

where

δAS =
Cov(Ai ,Si )
Var(Si )

is the regeression coeffi cient from a regression of Ai (the omitted
variable) on Si (the included variable).

Exercise: Derive the OVB formula (works just like for regression
anatonmy).

The OVB formula is a mechanical relationship between two
regressions: it holds regardless of the causal interpretation of any of
the coeffcients.
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Griliches (1977) regressions

The conventional wisdom is Cov(Ai ,Si ) > 0, so returns to schooling
estimates will be biased up.

Short regression estimates using the NLS

Yi = const+ 0.068
(0.003)

Si + experience

Long regression estimates

Yi = const+ 0.059
(0.003)

Si + 0.0028
(0.0005)

IQi + experience

The results are consistent with the conventional wisdom.
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Classical measurement error

Measurement error leads to bias. Many economic variables are
mismeasured.

Look at a generic example and start with a simple bivariate regression

Yi = α+ βX ∗i + ei .

We don’t observe X ∗i but Xi

Xi = X ∗i +mi

where

Cov(X ∗i ,mi ) = 0

Cov(ei ,mi ) = 0.

This is called classical measurement error.
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Attenuation from classical measurement error

The bivariate regression coeffi cient we estimate is

β̂ =
Cov(Yi ,Xi )
Var(Xi )

=
Cov(α+ βX ∗i + ei ,X

∗
i +mi )

Var(X ∗i +mi )

= β
Var(X ∗i )

Var(X ∗i ) + Var(mi )
= βλ.

We see that β is biased towards zero by an attenuation factor

λ =
Var(X ∗i )

Var(X ∗i ) + Var(mi )

which is the variance in the “signal”divided by the variance in the “signal
plus noise.”
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How measurement error works
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Measurement error in the returns to schooling

Think of Yi as log earnings, and Xi as schooling. Ignore age or
experience for the moment.

Ashenfelter and Krueger (1994) find λ = 0.9 for schooling.

This means if the true return to schooling is 0.1, we would expect an
estimate of 0.09.
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Measurement error with two regressors

The bivariate regression is not particularly interesting, since we
typically want to use regression to control for other factors.

Consider
Yi = α+ β1X

∗
1i + β2X2i + ei .

and only X ∗1i is subject to classical measurement error, i.e.
Cov(X ∗1i ,mi ) = Cov(X2i ,mi ) = 0.

Starting from
X1i = X ∗1i +mi

and using the classical measurement error assumptions we have

X̃1i = X̃ ∗1i +mi .
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Measurement error with two regressors

The estimator of β1 is now (using regression anatomy):

β̂1 =
Cov

(
Yi , X̃1i

)
Var

(
X̃1i
)

=
Cov

(
α+ β1X

∗
1i + β2X2i + ei , X̃

∗
1i +mi

)
Var

(
X̃1i
)

= β1

Var
(
X̃ ∗1i
)

Var
(
X̃ ∗1i
)
+ Var (mi )

= β1λ̃

It is easy to see that λ̃ ≤ λ whenever X ∗1i and X2i are correlated.

Fact
Adding correlated regressors makes attenuation bias from measurement
error worse.
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Comparing the short and long regression

The short regression (on just X1i ) coeffi cient is

β̂1,short = λβ1 + β2δX2X1 = λ
(

β1 + β2δX2X ∗1
)

where the estimate of β1 is biased both because of attenuation due to
measurement error, and because of omitted variables bias (the part
β2δX2X1 where δX2X1 is the coeffi cient from a regression of X2i on
X1i ).

The coeffi cient from the long regression is

β̂1,long = β1λ̃

and since
λ̃ < λ

but
β̂1,short ≶ β̂1,long .
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Comparing the short and long regression

Notice that it is more diffi cult to compare the bias from the short
regression and the long regression now.

λ̃ < λ implies that the attenuation bias goes up when another
regressor is entered which is correlated with X1i .

There is less attenuation in the short regression but there is also OVB
now. Not clear what the net effect is.
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Measurement error in the control

What about the coeffi cient β2? Even when there is no measurement
error in X2i , the estimate of β2 will be biased:

β̂2 = β1δX2X ∗1

(
1− λ̃

)
+ β2.

Note that the bias will be larger the larger

the measurement error
the correlation between X ∗1i and X2i

The intuition is that

β1 is attenuated, and hence does not reflect the full effect of X
∗
1i

β2 will capture part of the effect of X
∗
1i through the correlation with

X2i
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Measurement error in the returns to schooling controlling
for ability

We want to run the regression

yi = α+ ρS∗i + γAi + ei

where S∗i is schooling and Ai is ability. Suppose we only have a
mismeasured version of schooling, Si (so Si takes on the role of X1i before,
and Ai takes on the role of X2i ). Then the short regression will give

ρ̂short = λρ+ γδAS

and the long regression
ρ̂long = λ̃ρ

If ability bias is upwards (δAS > 0) it is not possible to say a priori which
estimate will be closer to ρ.
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Putting some numbers on the Griliches example

Pick some numbers for the regression

yi = 0.1S∗i + 0.01Ai + ei

and set

λ = 0.9

σS = 3, σA = 15, σAS = 22.5.

Then
δAS =

σAS
σ2S

=
22.5
9
= 2.5

and
ρ̂short = λρ+ γδAS = 0.9× 0.1+ 0.01× 2.5 = 0.115
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What about the long regression?

We first need

λ̃ =
Var

(
S̃∗i
)

Var
(
S̃∗i
)
+ Var (mi )

=
λ− R2AS
1− R2AS

which is

R2AS =

(
σAS

σSσA

)2
=

(
22.5
45

)2
= 0.25

λ̃ =
0.9− 0.25
1− 0.25 = 0.867.

Then the long regression coeffi cient is

ρ̂long = λ̃ρ = 0.867× 0.1 = 0.087

so the short regression coeffi cient is too large and the long regression
coeffi cient is too small.
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Measurement error in ability

Now suppose years of schooling is measured perfectly but instead of A∗i we
only have mismeasured ability Ai (so Si takes on the role of X2i before,
and Ai takes on the role of X1i ). Then

ρ̂ = γδAS

(
1− λ̃

)
+ ρ.

If ability bias is upwards (δAS > 0) then the returns to schooling will be
biased up but by less than in the short regression. Controlling for Ai is
better than controlling for nothing, but not as good as controlling for true
ability A∗i .
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Instrumental variables solve the measurement error problem

Suppose you have an instrument Zi , correlated with the signal X ∗i and
uncorrelated with the error mi .

In the bivariate regression you get

β̂IV =
Cov(Yi ,Zi )
Cov(Xi ,Zi )

=
Cov(α+ βX ∗i + ei ,Zi )
Cov(X ∗i +mi ,Zi )

=
βCov(X ∗i ,Zi )
Cov(X ∗i ,Zi )

= β

In the multivariate regression you get for similar reasons:

β̂1,IV = β1

β̂2,IV = β2

(notice that only the mismeasured X1i is instrumented)

Pischke (LSE) Griliches 1977 October 4, 2016 28 / 44



More Griliches (1977) regressions

Recall the Griliches long regression estimates

yi = const+ 0.059
(0.003)

Si + 0.0028
(0.0005)

IQi + experience

Instrumenting IQ with results from the Knowledge of the World of Work
test he gets

yi = const+ 0.052
(0.004)

Si + 0.0051
(0.0009)

IQi + experience

This is still consistent with two stories:

there is upward ability bias in the bivariate return to schooling and
measurement error in IQ but not schooling (in this case the estimate
of 0.052 is correct)

there is measurement error in both schooling and ability (in this case
the true coeffi cient could be anything).
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What to control for?

In the quest for identifying causal effects, which variables belong on the
right hand side of a regression equation?

Yes: Variables determining the treatment and correlated with the
outcome (e.g. ability).

in general these variables will be fixed characteristics or pre-determined
by the time of treatment (e.g. schooling)
but remember the warnings on measurement error just discussed: the
kitchen sink is no panacea

Yes: Variables uncorrelated with the treatment but correlated with the
outcome

these variables may help reducing standard errors

No: Variables which are outcomes of the treatment itself. These are
bad controls.
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Bad control

Some researchers regressing earnings on schooling (and experience) include
controls for occupation. Does this make sense?

Clearly we can think of schooling affecting the access to higher level
occupations, e.g. you need a Ph.D. to become a college professor.
This gives rise to a two equation system

Yi = α+ ρSi + γOi + ei
Oi = λ0 + λ1Si + ui

You could think about these as a simultaneous equations system.
Occupation Oi is an endogenous variable. As a result, you could not
necessarily estimate the first equation by OLS.

Occupation is a bad control.
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Bad control example 1
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Bad control example 2
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Proxy control

Sometimes we control for a variable in the best of intentions. Suppose
our regression of schooling on earnings

Yi = α+ ρSi + γAi + ei

has a causal interpretation conditional on ability.
Instead of ability we only have a test score taken at age 18, call it Ali for
late ability. The problem is that schooling will already have influenced the
late ability (some students will have dropped out by 18). Suppose

Ali = π0 + π1Si + π2Ai

i.e. that age 18 test scores are influenced by both schooling and true
ability.
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What do we get with proxy control?

Substituting for Ai in our regression above we get

yi =
(

α− γ
π0
π2

)
+

(
ρ− γ

π1
π2

)
Si +

γ

π2
Ali + ei .

If

ρ > 0

γ > 0

π1 > 0,π2 > 0

then (
ρ− γ

π1
π2

)
< ρ

and we will estimate a return to schooling that is too small.
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Are our results robust?

Suppose you have an identification strategy, say

Yi = α+ ρSi + γ1Ai + ei .

You have another variable, Xi , which could potentially be an additional
confounder. What do you do with it?

Yi = αl + ρlSi + γ1lAi + γ2Xi + e
l
i

Is ρl = ρ?

Xi = δ0 + δSi + δ1Ai + ui

Is δ = 0?
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A tale of two tests

Yi = α+ ρSi + γ1Ai + ei
Yi = αl + ρlSi + γ1lAi + γ2Xi + e

l
i

Xi = δ0 + δSi + δ1Ai + ui

The test ρl = ρ is a coeffi cient comparison test. Formally a
generalized Hausman test.

The test δ = 0 is a balancing test.

How are they related? Through the OVB formula:

ρ− ρl = γ2δ.

Under the maintained assumption γ2 6= 0, the two tests test the same null
hypothesis δ = 0.
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Measurement error in controls again

Remember

ρ̂l = γ2δ
(
1− λ̃

)
+ ρ

γ̂2 = γ2λ̃.

Classical measurement error in Xi biases ρ̂l towards ρ, and γ̂2 towards
0.

ρ̂l closer to ρ: power of the coeffi cient comparison test directly
affected.
Variation from measurement error ends up in e li , raising standard errors
and reducing power

There is no bias in the estimate of δ

Variation from measurement error ends up in ui , raising standard errors
and reducing power
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Theoretical Power Functions
Homoskedastic, plain standard errors
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Simulated Rejection Rates
Heteroskedasticity, robust standard errors
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Simulated Rejection Rates
Mean reverting measurement error, robust standard errors
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Baseline Regressions for Returns to Schooling

 Log hourly earnings Mother's years of 
education 

Library card 
at age 14 

 (1) (2) (3) (6) (7) 
      

Years of education 0.0751 0.0728 0.0735 0.3946 0.0371 
(0.0040) (0.0042) (0.0040) (0.0300) (0.0040) 

      

Mother's years of education   0.0059      
  (0.0029)      

          

Library card at age 14     0.0428    
    (0.0183)    

          
p-values       

Coefficient comparison test   0.045 0.023    
Balancing test      0.000 0.000 
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Returns to Schooling controlling for KWW score

 Log hourly earnings Mother's years of 
education 

Library card 
at age 14 

 (1) (2) (3) (6) (7) 
         

Years of education 0.0609 0.0596 0.0608  0.2500  0.0133 
(0.0059) (0.0060) (0.0059)  (0.0422) (0.0059) 

        

KWW score 0.0070 0.0068 0.0069  0.0410  0.0076 
(0.0015) (0.0016) (0.0016)  (0.0107)  (0.0016) 

           

Mother's years of education   0.0053         
  (0.0037)         

               

Library card at age 14     0.0097       
    (0.0215)       

               

Body height in inches             
            

  

p-values       
Coefficient comparison test   0.163 0.652   
Balancing test     0.000  0.025 
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Returns to Schooling instrumenting the KWW score

 Log hourly earnings Mother's years of 
education 

Library card 
at age 14 

 (1) (2) (3) (6) (7) 
         

Years of education 0.0340 0.0339 0.0342  0.0234  0.0168 
(0.0139) (0.0139) (0.0138)  (0.0952)  (0.0134) 

        

KWW score instrumented by IQ 0.0194 0.0195 0.0200   0.1496   0.0060 
(0.0063) (0.0063) (0.0063)   (0.0422)   (0.0060) 

           

Mother's years of education    0.0028             
   (0.0039)             

               

Library card at age 14       -0.0130          
      (0.0245)          

               

Body height in inches                   
                  

  

p-values       
Coefficient comparison test   0.818 0.635        
Balancing test          0.806   0.212 
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